歡迎進入北京鑫視科科技有限公司網(wǎng)站!
大氣壓介質阻擋放電(DBD)能夠在常壓環(huán)境下生成非平衡等離子體,已成為備受矚目的研究領域。通過脈沖或交變電源激發(fā)放電,探究電源輸出特性、電源與放電發(fā)生器負載間的匹配關系以及外界條件對放電過程的影響,對于深入理解放電現(xiàn)象、提升放電效率具有重要意義。本文運用 Lissajous 圖形法,分別研究了驅動電壓、氣流速率等因素對同軸 DBD 發(fā)生器介質層等效電容及負載幅頻特性的影響規(guī)律。結果顯示,氣流速率和驅動電壓等外界條件會對 DBD 發(fā)生器的負載特性產(chǎn)生作用:介質層等效電容隨氣流速率的增大而減小,隨驅動電壓的增大而增大;幅頻特性曲線均呈現(xiàn)出 RLC 回路諧振現(xiàn)象,諧振頻率隨氣流速率的增大而升高,隨驅動電壓的增大而降低。經(jīng)對比發(fā)現(xiàn),介質層等效電容隨頻率的變化曲線與幅頻特性曲線具有一致的特征,介質層等效電容是導致電路諧振頻率動態(tài)變化的主要因素。此外,本文還提出了一種關于介質層等效電容的形成機制。
一、引言
(1)研究背景與意義
大氣壓介質阻擋放電(DBD)作為產(chǎn)生非熱平衡等離子體的便捷方式,在眾多領域得到了廣泛應用,如臭氧發(fā)生器、CO2激光器、準分子紫外光源、污染物控制與脫除以及材料表面改性等。為了獲得大面積均勻低溫等離子體,深入研究放電條件,如驅動電壓、驅動頻率、氣隙間距、介質成分與厚度、氣流、工作壓強等因素對放電特性的影響機制,已成為近年來 DBD 領域的研究熱點。
外界條件能夠顯著影響 DBD 發(fā)生器的放電特性和放電模式,然而,目前對于其作用機制的研究尚不夠深入。例如,在大氣壓 DBD 放電中,控制 He 氣流速在一定范圍內,可實現(xiàn)穩(wěn)定的均勻放電模式,原因是載入的 He 氣流量降低了擊穿電壓,從而可同時達到最高放電效率及 He 亞穩(wěn)態(tài)數(shù)目。不同氣流速率條件下,下游區(qū)域等離子體射流長度存在差異,可劃分為層狀模式、過渡模式與湍流模式。快速氣流能夠抑制放電過程中的熱電離不穩(wěn)定性,使空氣環(huán)境中的輝光放電更加穩(wěn)定。大氣壓氦氣 DBD 放電電流會隨著流速的增加先減小后增大,這是由于氮分子對氦亞穩(wěn)態(tài)的猝滅作用所致。研究還發(fā)現(xiàn),氬氣和空氣混合氣體介質阻擋放電中,放電絲結構會隨外加電壓及氣壓的變化而改變,并且在氦等離子體射流研究中,不同外加電壓下可呈現(xiàn)類 streamer 放電和類輝光放電模式。不同驅動頻率下,氬等離子體放電模式也會發(fā)生轉變。
放電條件的改變會導致放電模式的變化,進而影響放電電路的諧振特性。將電源與 DBD 發(fā)生器構成的電路系統(tǒng)進行等效模型化,對于研究放電條件與等效電路電氣特性之間的關系具有重要意義。
為提高 DBD 發(fā)生器的放電效率,改善等離子體的均勻性,實現(xiàn)電源與負載之間的阻抗匹配至關重要。通過阻抗匹配,可使電源輸出的能量更多地耦合到發(fā)生器中,降低發(fā)生器對電源的反射功率。然而,在 DBD 過程中,驅動電壓、氣流速率等外界條件的變化可能導致放電系統(tǒng)的電氣特性發(fā)生動態(tài)改變,從而影響阻抗匹配的效果。DBD 通常采用方波脈沖電源或者準正弦的脈沖電源,其過程涉及等離子體點火、熄滅和亞穩(wěn)態(tài)激發(fā)、復合過程,以及電荷在空間遷移和壁面吸附等復雜的宏觀、微觀過程。此外,DBD 的放電氣體和放電方式也會對電氣特性產(chǎn)生影響。因此,建立合理的電路模型,深入分析內在影響機制,對于提高匹配效果具有重要的現(xiàn)實意義。盡管目前已有一些 DBD 放電系統(tǒng)的匹配方案報道,但大多未充分考慮氣流等條件對系統(tǒng)電學參量及放電特性的影響。本文聚焦于研究介質層等效電容這一電學特征參量,通過實驗測量參數(shù),結合等效電路模型,分析負載電阻、電抗與阻抗值隨驅動電壓和氣流速率的變化規(guī)律,旨在為實現(xiàn)電源與負載間的動態(tài)阻抗匹配提供有效的技術手段。
(2)國內外研究現(xiàn)狀
在國外,對于 DBD 等離子體負載的研究開展較早且較為深入。Nersisyan 和 Graham 發(fā)現(xiàn)通過控制 He 氣流速可實現(xiàn)大氣壓 DBD 穩(wěn)定均勻放電模式 。Akishev 等指出快速氣流對空氣環(huán)境中輝光放電穩(wěn)定性的影響 。這些研究從不同角度揭示了外界條件對 DBD 放電特性的作用。在動態(tài)阻抗匹配技術方面,一些研究提出了多種匹配網(wǎng)絡和控制策略 ,但在考慮復雜外界條件影響方面仍有待完善。
國內相關研究也取得了一定成果。江南等在氦等離子體射流研究中發(fā)現(xiàn)不同電壓下的放電模式 。劉等利用一維流體模型模擬不同驅動頻率下氬等離子體放電模式轉變 。在阻抗匹配研究上,部分學者針對特定應用場景提出了相應的匹配方法 ,但在全面考慮 DBD 放電過程中各種因素動態(tài)變化對阻抗匹配影響的研究還不夠系統(tǒng)。總體而言,目前對于 DBD 等離子體負載在復雜外界條件下的動態(tài)阻抗匹配技術研究尚存在不足,需要進一步深入探究。
二、DBD 等離子體負載特性分析
(1)DBD 等離子體產(chǎn)生原理
DBD 是一種典型的非平衡態(tài)交流氣體放電形式。在兩個電極之間插入絕緣介質(如玻璃、陶瓷、石英等),當施加足夠高的交變電壓時,氣體被擊穿產(chǎn)生放電現(xiàn)象。其本質是通過絕緣介質限制放電電流,避免形成局部弧光放電,從而在氣隙中產(chǎn)生均勻、穩(wěn)定的等離子體。
當交變電壓作用于電極時,電極間建立電場,氣體中的自由電子在電場作用下加速運動,與中性氣體分子碰撞,使分子電離產(chǎn)生更多電子和離子,形成初始電子崩。隨著放電發(fā)展,產(chǎn)生的電荷會積累在絕緣介質表面,形成與外電場方向相反的感應電場,抑制放電電流的進一步增大,避免弧光放電的形成。在交變電壓的正負半周,介質表面的電荷不斷積累和釋放,維持著穩(wěn)定的微放電通道,這些微放電通道隨機分布且快速熄滅和重燃,宏觀上表現(xiàn)為均勻的放電等離子體。
(2)負載特性影響因素
1.驅動電壓的影響
驅動電壓是影響 DBD 等離子體負載特性的關鍵因素之一。當驅動電壓發(fā)生變化時,會直接影響等離子體放電的起始、發(fā)展和穩(wěn)定狀態(tài)。隨著驅動電壓的增大,電極間電場強度增強,氣體分子更容易被電離,從而使等離子體密度增加。這會導致放電電流增大,同時也會影響介質層等效電容。實驗表明,介質層等效電容隨驅動電壓增大而增大。在實際應用中,如在臭氧發(fā)生器中,較高的驅動電壓能夠提高臭氧的生成速率,但同時也可能帶來一些問題,如對電源功率要求提高、放電穩(wěn)定性下降等。
2.氣流速率的影響
氣流速率對 DBD 等離子體負載特性也有著顯著影響。氣流的引入可以改變放電區(qū)域的氣體成分、溫度分布以及帶電粒子的輸運過程。增大氣流速率,一方面可以將放電產(chǎn)生的熱量和反應產(chǎn)物及時帶出,降低放電區(qū)域的溫度,抑制熱電離過程,使放電更加穩(wěn)定;另一方面,氣流會影響等離子體中粒子的濃度和分布,進而影響放電特性。研究發(fā)現(xiàn),介質層等效電容隨氣流速率增大而減小,且幅頻特性曲線中的諧振頻率隨氣流速率增大而增大。在等離子體污染物控制應用中,合適的氣流速率能夠提高污染物的去除效率,但如果氣流速率過大,可能會導致等離子體與污染物接觸時間過短,反而降低處理效果。
3.其他因素的影響
除了驅動電壓和氣流速率外,還有諸多因素會對 DBD 等離子體負載特性產(chǎn)生影響。例如,驅動頻率的變化會影響放電的功率、等離子體密度和均勻性。工作電壓通常為數(shù)千伏至數(shù)十千伏,頻率范圍從工頻(50/60Hz)到兆赫茲級,不同的頻率范圍適用于不同的應用場景。介質的成分與厚度也會對放電特性產(chǎn)生作用,不同的介質材料具有不同的介電常數(shù)和絕緣性能,會影響電荷在介質表面的積累和釋放過程,從而影響放電的穩(wěn)定性和等離子體的特性。氣隙間距同樣重要,合適的氣隙間距能夠保證放電的均勻性和穩(wěn)定性,氣隙間距過大或過小都可能導致放電模式的改變和放電效率的降低。工作壓強的變化也會影響氣體分子的密度和平均自由程,進而影響等離子體的產(chǎn)生和特性。在高氣壓環(huán)境下,氣體分子密度大,電子與分子碰撞頻率高,有利于等離子體的產(chǎn)生,但也可能增加放電的不穩(wěn)定性;而在低氣壓環(huán)境下,氣體分子平均自由程長,電子在電場中加速距離長,更容易獲得足夠能量激發(fā)和電離氣體分子,但等離子體密度相對較低。
三、動態(tài)阻抗匹配原理
(1)阻抗匹配基本概念
阻抗匹配是指通過調整電路中的元件參數(shù),使電源的輸出阻抗與負載阻抗相匹配,以實現(xiàn)高效的能量傳輸。在 DBD 等離子體系統(tǒng)中,電源輸出的能量需要有效地傳輸?shù)截撦d(即 DBD 發(fā)生器)中,以維持穩(wěn)定的等離子體放電。當電源輸出阻抗與負載阻抗不匹配時,會導致部分能量反射回電源,降低能量傳輸效率,同時可能影響電源的穩(wěn)定性和等離子體的放電特性。例如,若負載阻抗呈現(xiàn)容性,而電源輸出阻抗為感性,兩者不匹配會使得電路中產(chǎn)生較大的無功功率,導致能量浪費,且可能引起電壓波動,影響等離子體的均勻性和穩(wěn)定性。
(2)動態(tài)阻抗匹配的必要性
在 DBD 等離子體放電過程中,由于受到驅動電壓、氣流速率、工作壓強等多種外界條件的影響,負載阻抗會發(fā)生動態(tài)變化。例如,隨著驅動電壓的升高,等離子體密度增加,負載的等效電阻和電抗會相應改變;氣流速率的變化會影響等離子體的溫度和粒子濃度分布,進而導致負載阻抗變化。如果采用固定的阻抗匹配方式,無法適應負載阻抗的動態(tài)變化,會導致能量傳輸效率降低,放電不穩(wěn)定。因此,需要引入動態(tài)阻抗匹配技術,實時監(jiān)測負載阻抗的變化,并相應地調整匹配電路的參數(shù),以保證在不同工作條件下都能實現(xiàn)高效的能量傳輸和穩(wěn)定的等離子體放電。
(3)動態(tài)阻抗匹配實現(xiàn)方式
實現(xiàn)動態(tài)阻抗匹配的方式有多種,常見的包括采用可變電容、可變電感組成的匹配網(wǎng)絡,通過自動控制系統(tǒng)實時調整電容和電感的值來匹配負載阻抗的變化;利用智能算法,如模糊控制、神經(jīng)網(wǎng)絡等,根據(jù)實時監(jiān)測到的負載阻抗信息,計算出最佳的匹配參數(shù),并控制相應的執(zhí)行機構調整匹配電路;還可以采用數(shù)字信號處理器(DSP)或現(xiàn)場可編程門陣列(FPGA)等數(shù)字控制芯片,實現(xiàn)對匹配過程的精確控制。例如,在一些實驗裝置中,通過在電源與 DBD 發(fā)生器之間接入由可變電容和可變電感組成的 LC 匹配網(wǎng)絡,利用高精度的電壓和電流傳感器實時監(jiān)測負載端的電壓和電流信號,經(jīng)過計算得到負載阻抗,再通過控制系統(tǒng)調整可變電容和電感的值,使匹配網(wǎng)絡的輸出阻抗與負載阻抗相匹配,從而實現(xiàn)動態(tài)阻抗匹配。
四、實驗研究
(1)實驗裝置與方法
1.實驗裝置搭建
實驗采用的主要裝置包括同軸 DBD 發(fā)生器、驅動電源、測量設備等。同軸 DBD 發(fā)生器由內電極、外電極和中間的絕緣介質層組成,絕緣介質層采用石英材料。驅動電源為可提供不同頻率和電壓幅值的交流電源。測量設備包括 Tektronix P2000 型高壓探頭(帶寬為 200MHz)用于測量放電電壓,Tektronix TCP312 型電流探頭用于測量放電電流,Tektronix TCPA300 型數(shù)字示波器用于采集電壓和電流信號。此外,還使用了一個大小為 16.4nF 的電容 Cs 與反應器串聯(lián),用于采集介質板上積累電荷。在中頻交流電源和 DBD 等離子體反應器之間并聯(lián) LC 阻抗匹配網(wǎng)絡,該網(wǎng)絡包括 1nF 高壓電容 C1、在 47 - 300pF 范圍內連續(xù)可調的電容 C2 及 2.7 - 32H 的電感 L 。
2.Lissajous 圖形法測量原理
本文利用放電電壓與電流波形獲得 Lissajous 圖形,并對大氣壓同軸 DBD 發(fā)生器進行電學診斷。為測量 DBD 放電電極之間的遷移電荷 Q,采用電流探頭直接測量 DBD 電流信號,將電流信號對時間積分得到轉移電荷量 Q,最后得到 Q - V Lissajous 圖形。采用編制的 Lissajous 圖形參數(shù)計算程序處理實驗數(shù)據(jù)。通過分析 Lissajous 圖形的形狀和參數(shù),可以得到放電發(fā)生器等效介質層電容值隨驅動電壓和氣流速率條件變化的動態(tài)變化規(guī)律,以及驅動電壓和氣流速率對發(fā)生器負載幅頻特性的影響規(guī)律。
(2)實驗結果與分析
1.介質層等效電容變化規(guī)律
實驗發(fā)現(xiàn),介質層等效電容隨氣流速率和驅動電壓的變化呈現(xiàn)出特定規(guī)律。在不同驅動頻率下,介質層等效電容隨氣流速率的變化情況不同。在 28kHz,7kV 條件下,放電功率相對較小,在 40kHz,7.7kV 條件下,放電功率增大,氣流速率較小時,介質層等效電容變化較緩慢;在 35kHz,7.4kV 條件下,變化特性居于上述兩種情況之間。這表明介質層等效電容的變化與放電功率有關,且在不同電源參數(shù)下,其隨氣流速率的變化率不同。同時,介質層等效電容隨驅動電壓增大而增大,這是因為驅動電壓升高,等離子體密度增加,使得介質表面積累的電荷增多,從而導致等效電容增大。
2.負載幅頻特性分析
工作于不同驅動頻率時,發(fā)生器負載上的電壓隨氣流速率變化的關系可表現(xiàn)出截然相反趨勢。當驅動電壓幅值為 7.25kV,驅動頻率為 28kHz 時,增加氣流速率負載電壓隨之減小;而當驅動頻率為 40kHz 時,負載電壓隨氣流速率的增大呈增大趨勢。諧振特性是 DBD 發(fā)生器的重要特征之一,發(fā)生器與電源輸出之間的匹配狀態(tài)決定了系統(tǒng)的放電效率,工作于諧振頻率時系統(tǒng)的功率效率高。增加氣流速率,諧振頻率逐漸增大,同時,增大氣流速率,諧振負載電壓也逐漸升高;當驅動頻率在小于諧振頻率的區(qū)域內變化時,發(fā)生器負載電壓變化率較大,表現(xiàn)出明顯的容性負載特征。在驅動頻率處于 32kHz 附近,不同氣流速率對應的負載電壓近似相等,約 7kV,說明工作于此頻率的放電狀態(tài)受氣流的影響很小,這對 DBD 應用中穩(wěn)定放電狀態(tài)具有一定的指導意義。
五、動態(tài)阻抗匹配技術應用
(1)在等離子體發(fā)生器中的應用
在等離子體發(fā)生器中應用動態(tài)阻抗匹配技術,能夠顯著提高其性能。通過實時監(jiān)測負載阻抗的變化,并及時調整匹配網(wǎng)絡參數(shù),可使電源輸出的能量更高效地傳輸?shù)降入x子體發(fā)生器中,從而提高等離子體的產(chǎn)生效率和穩(wěn)定性。在材料表面改性應用中,穩(wěn)定且高效的等離子體源能夠使材料表面處理效果更加均勻、一致,提高材料的表面性能。動態(tài)阻抗匹配技術還可以降低電源的負擔,延長電源的使用壽命,減少設備維護成本。由于能夠適應不同工作條件下負載阻抗的變化,等離子體發(fā)生器的應用范圍也得到了拓展,可以在更復雜的環(huán)境和工藝要求下穩(wěn)定運行。
(2)在其他相關領域的潛在應用
除了在等離子體發(fā)生器中的直接應用,動態(tài)阻抗匹配技術在其他相關領域也具有潛在的應用價值。在污染物控制與脫除領域,DBD 等離子體可用于處理廢氣、廢水等污染物。動態(tài)阻抗匹配技術能夠保證在不同污染物濃度、氣流速率等條件下,等離子體放電穩(wěn)定且高效,從而提高污染物的去除效率。在準分子紫外光源領域,通過動態(tài)阻抗匹配優(yōu)化等離子體放電,可提高紫外光源的發(fā)光效率和穩(wěn)定性,為相關光化學反應提供更穩(wěn)定、高效的光源。在一些需要精確控制等離子體參數(shù)的科研實驗中,動態(tài)阻抗匹配技術能夠確保實驗條件的穩(wěn)定性和可重復性,有助于科研人員獲得更準確的實驗結果,推動相關領域的科學研究進展。
六、結論
本文通過對 DBD 等離子體負載的動態(tài)阻抗匹配技術進行研究,得出以下主要結論:外界條件如驅動電壓和氣流速率對 DBD 發(fā)生器的負載特性有顯著影響,介質層等效電容隨氣流速率增大而減小,隨驅動電壓增大而增大;幅頻特性曲線呈現(xiàn) RLC 回路諧振現(xiàn)象,諧振頻率隨氣流速率增大而增大,隨驅動電壓增大而減小,且介質層等效電容是影響電路諧振頻率動態(tài)變化的主要因素。通過 Lissajous 圖形法實驗測量,獲得了介質層等效電容及負載幅頻特性隨外界條件變化的規(guī)律。動態(tài)阻抗匹配技術對于提高 DBD 等離子體系統(tǒng)的性能至關重要,能夠適應負載阻抗的動態(tài)變化,實現(xiàn)高效的能量傳輸和穩(wěn)定的等離子體放電。
產(chǎn)品展示
SSC-DBD3050介質阻擋放電等離子體電源,使用了公司智能控制技術生產(chǎn),具有負載匹配范圍寬,體積小,重量輕,效率高,結構簡單,操作容易但功能強大,穩(wěn)定可靠,等優(yōu)點。電路采用模塊化設計,調試維修方便。本電源完善保護,使電源能夠工作于各種復雜的環(huán)境,中英文提示功能,使問題清晰準確。
4008058599